Order this document by MC1490/D

MC1490

WIDEBAND AMPLIFIER

WITH AGC

RF/IF/Audio Amplifier

The MC1490 is an integrated circuit featuring wide-range AGC for use in RF/IF amplifiers and audio amplifiers over the temperature range, -40° to $+85^{\circ}$ C.

- High Power Gain: 50 dB Typ at 10 MHz
 45 dB Typ at 60 MHz
 35 dB Typ at 100 MHz
- Wide Range AGC: 60 dB Min, DC to 60 MHz
- 6.0 V to 15 V Operation, Single Polarity Supply
- See MC1350D for Surface Mount

MAXIMUM RATINGS (T_A = +25°C, unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	+18	Vdc
AGC Supply	VAGC	Vcc	Vdc
Input Differential Voltage	V _{ID}	5.0	Vdc
Operating Temperature Range	ТА	-40 to +85	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Junction Temperature	Тј	+150	°C

ORDERING INFORMATION

e	operaung 🐁	10
Device	Temperature Range	Package
MC1490P	T _A = −40° to +85°C	Plastic

SCATTERING PARAMETERS (V_{CC} = +12 Vdc, T_A = +25°C, Z_0 = 50 Ω)					
		f = N Ty			
Parameter	Symbol	30	60	Unit	
Input Reflection Coefficient	IS ₁₁ 1 011	0.95 -7.3	0.93 -16	_ deg	
Output Reflection Coefficient	IS ₂₂ Ι θ22	0.99 -3.0	0.98 -5.5	_ deg	
Forward Transmission Coefficient	IS ₂₁ I 0 21	16.8 128	14.7 64.3	_ deg	
Reverse Transmission Coefficient	S ₁₂ 012	0.00048 84.9	0.00092 79.2	_ deg	

© Motorola, Inc. 1996

Characteristic	Figure	Symbol	Min	Тур	Max	Unit
Power Supply Current Drain		lcc	-	-	17	mA
AGC Range (AGC) 5.0 V Min to 7.0 V Max	19	MAGC	-60	-	-	dB
Output Stage Current (Sum of Pins 1 and 8)	-	10	4.0	-	7.5	mA
Single–Ended Power Gain $R_S = R_L = 50 \ \Omega$	19	Gp	40		-	dB
Noise Figure R _S = 50 Ohms	19	NF	-	6.0		dB
Power Dissipation	-	PD	_	168	204	mW

Figure 2. Voltage Gain versus Frequency (Video Amplifier, See Figure 20)

G

Figure 4. Voltage Gain versus Frequency (Video Amplifier, See Figure 20)

Secondary Winding = 4 turns, #22 AWG wire, Coefficient of Coupling ≈ 1.0 T2: Primary Winding = 10 turns, #22 AWG wire, 1/4" ID Air Core Secondary Winding = 2 turns, #22 AWG wire, Coefficient of Coupling ≈ 1.0

DESCRIPTION OF SPEECH COMPRESSOR

The amplifier drives the base of a PNP transistor operating common-emitter with a voltage gain of approximately 20. The control R1 varies the quiescent Q point of this transistor so that varying amounts of signal exceed the level V_r. Diode D1 rectifies the positive peaks of Q1's output only when these peaks are greater than V_r \approx 7.0 V. The resulting output is filtered by C_x, R_x.

 R_X controls the charging time constant or attack time. C_X is involved in both charge and discharge. R2 (the 150 k Ω and input resistance of the emitter–follower Q2) controls the decay time. Making the decay long and attack short is accomplished by making R_X small and R2 large. (A Darlington emitter–follower may be needed if extremely slow decay times are required.)

The emitter-follower Q2 drives the AGC Pin 5 of the MC1490P and reduces the gain. R3 controls the slope of signal compression.

Table 1. Distortion versus Frequency

Frequency	Distortion		Distortion		
	10 mV e _i	100 mV ej	10 mV e _i	100 mV ej	
100 Hz	3.5%	12%	15%	27%	
300 Hz	2%	10%	6%	20%	
1.0 kHz	1.5%	8%	3%	9%	
10 kHz	1.5%	8%	1%	3%	
100 kHz	1.5%	8%	1%	3%	
	Notes 1 and 2		Notes :	3 and 4	

(1) Decay = 300 ms Attack = 20 ms

 $C_X = 7.5 \ \mu F$

R_x = 0 (Short)

(2)

Notes:

(3) Decay = 20 ms Attack = 3.0 ms

 $\begin{array}{l} C_{\rm X} = 0.68 \; \mu {\sf F} \\ {\sf R}_{\rm X} = 1.5 \; {\sf k} \Omega \end{array}$

(4)

OUTLINE DIMENSIONS

the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary overtime. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and **(**) are registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454

0

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://Design-NET.com JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

MC1490/D