

INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC06 December 1990

FEATURES

- · Inputs and outputs on opposite sides of package allowing easy interface with microprocessors
- · Useful as input or output port for microprocessors/microcomputers
- · 3-state non-inverting outputs for bus oriented applications
- Common 3-state output enable input
- · Functionally identical to the "563" and "373"
- · Output capability: bus driver

QUICK REFERENCE DATA

I_{CC} category: MSI

GND = 0 V; $T_{amb} = 25 \text{ °C}$; $t_r = t_f = 6 \text{ ns}$

GENERAL	DESCRIPTION
OLIVENAL	

The 74HC/HCT573 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT573 are octal D-type transparent latches featuring separate D-type inputs for each latch and 3-state outputs for bus oriented applications.

A latch enable (LE) input and an output enable (\overline{OE}) input are common to all latches.

The "573" consists of eight D-type transparent latches with 3-state true outputs. When LE is HIGH, data at

the D_n inputs enter the latches. In this condition the latches are transparent, i.e. a latch output will change state each time its corresponding D-input changes.

When LE is LOW the latches store the information that was present at the D-inputs a set-up time preceding the HIGH-to-LOW transition of LE. When \overline{OE} is LOW, the contents of the 8 latches are available at the outputs. When \overline{OE} is HIGH, the outputs go to the high impedance OFF-state. Operation of the \overline{OE} input does not affect the state of the latches.

The "573" is functionally identical to the "563" and "373", but the "563" has inverted outputs and the "373" has a different pin arrangement.

SYMBOL	PARAMETER	CONDITIONS	ТҮР	UNIT		
STWBOL		CONDITIONS	нс	нст		
t _{PHL/} t _{PLH}	propagation delay	C _L = 15 pF; V _{CC} = 5 V				
	D _n to Q _n		14	17	ns	
	LE to Q _n		15	15	ns	
CI	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per latch	notes 1 and 2	26	26	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz; f_0 = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

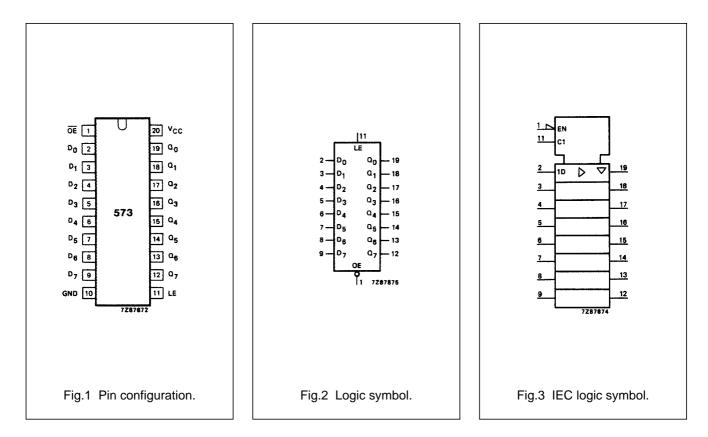
C_L = output load capacitance in pF; V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC} ; for HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V

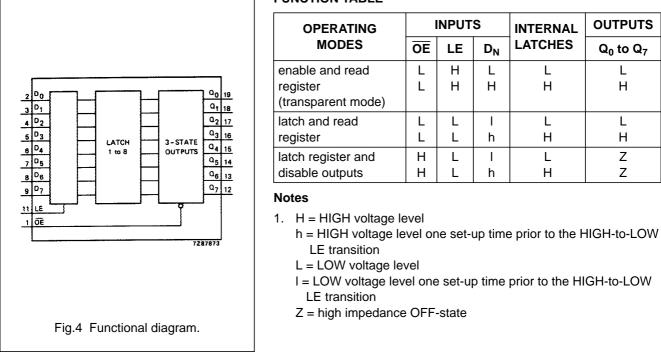
ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

Product specification


74HC/HCT573

74HC/HCT573


PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
2, 3, 4, 5, 6, 7, 8, 9	D ₀ to D ₇	data inputs
11	LE	latch enable input (active HIGH)
1	ŌĒ	3-state output enable input (active LOW)
10	GND	ground (0 V)
19, 18, 17, 16, 15, 14, 13, 12	Q ₀ to Q ₇	3-state latch outputs
20	V _{CC}	positive supply voltage

74HC/HCT573

Dr 0 a ۵ n a a Q ٥ 0 LATCH LATCH LATCH LATCH LATCH LATCH LATCH LATCH 3 5 6 7 8 1 4 Œ ĨĔ LE ĨĒ LE īĒ ίĒ Q3 a o Q. ٥, ٥. ۵, 7287871 Fig.5 Logic diagram.

FUNCTION TABLE

74HC/HCT573

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

SYMBOL	PARAMETER	Т _{ать} (°С)								TEST CONDITIONS	
		74HC									
		+25		-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		(•)	
t _{PHL} / t _{PLH}	propagation delay D _n to Q _n		47 17 14	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.6
t _{PHL} / t _{PLH}	propagation delay LE to Q _n		50 18 14	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.7
t _{PZH} / t _{PZL}	3-state output enable time OE to Q _n		44 16 13	140 28 24		175 35 30		210 42 36	ns	2.0 4.5 6.0	Fig.8
t _{PHZ} / t _{PLZ}	3-state output disable time \overline{OE} to Q_n		55 20 16	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.8
t _{THL} / t _{TLH}	output transition time		14 5 4	60 12 10		75 15 13		90 18 15	ns	2.0 4.5 6.0	Fig.6
t _W	enable pulse width HIGH	80 16 14	14 5 4		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.7
t _{su}	set-up time D _n to LE	50 10 9	11 4 3		65 13 11		75 15 13		ns	2.0 4.5 6.0	Fig.9
t _h	hold time D _n to LE	5 5 5	3 1 1		5 5 5		5 5 5		ns	2.0 4.5 6.0	Fig.9

74HC/HCT573

Product specification

Octal D-type transparent latch; 3-state

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD	COEFFICIENT
D _n	0.35	
LE	0.65	
OE	1.25	

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

SYMBOL	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
			74HCT								
		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(•)	
t _{PHL} / t _{PLH}	propagation delay D_n to Q_n		20	35		44		53	ns	4.5	Fig.6
t _{PHL} / t _{PLH}	propagation delay LE to Q _n		18	35		44		53	ns	4.5	Fig.7
t _{PZH} / t _{PZL}	3-state output enable time OE to Q _n		17	30		38		45	ns	4.5	Fig.8
t _{PHZ} / t _{PLZ}	3-state output disable time OE to Q _n		18	30		38		45	ns	4.5	Fig.8
t _{THL} / t _{TLH}	output transition time		5	12		15		18	ns	4.5	Fig.6
t _W	enable pulse width HIGH	16	5		20		24		ns	4.5	Fig.7
t _{su}	set-up time D _n to LE	13	7		16		20		ns	4.5	Fig.9
t _h	hold time D _n to LE	9	4		11		14		ns	4.5	Fig.9

7293848

Fig.8

Octal D-type transparent latch; 3-state

AC WAVEFORMS

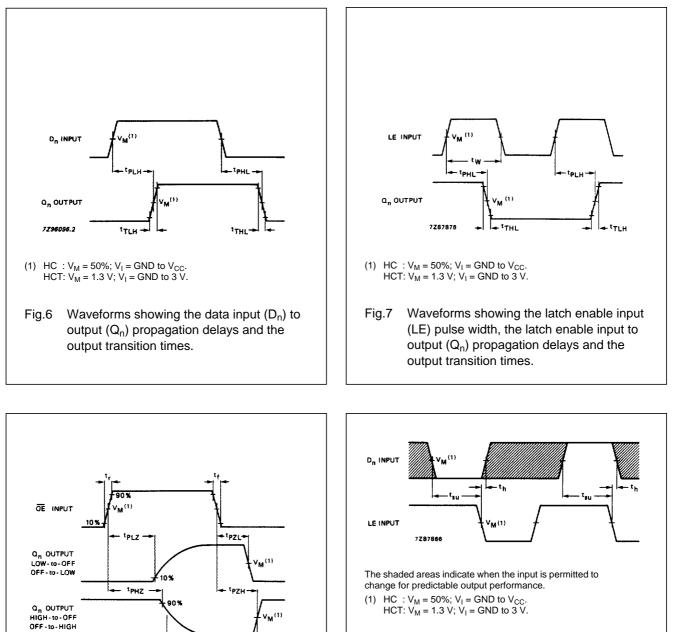


Fig.9 Waveforms showing the data set-up and hold times for D_n input to LE input.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

Product specification

outputs

Waveforms showing the 3-state enable and

outputs enabled

(1) HC : $V_M = 50\%$; $V_I = GND$ to V_{CC} . HCT: $V_M = 1.3$ V; $V_I = GND$ to 3 V.

disable times.

outputs

