

FOUR OUTPUT DIFFERENTIAL BUFFER FOR PCIE GEN1,2,3

9DB433

General Description

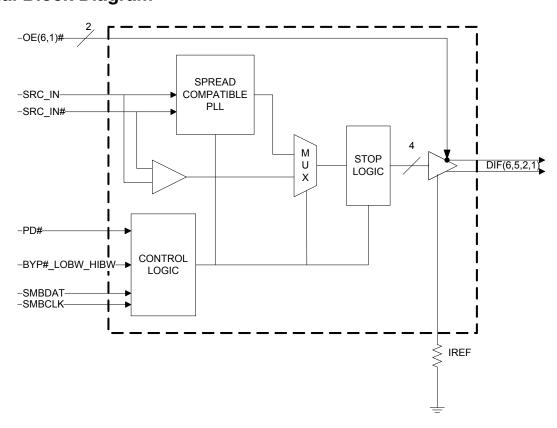
The 9DB433 zero-delay buffer supports PCIe Gen3 requirements, while being backwards compatible to PCIe Gen2 and Gen1. The 9DB433 is driven by a differential SRC output pair from an IDT 932S421 or 932SQ420 or equivalent main clock generator.

Recommended Application

4 output PCIe Gen1,2,3 zero-delay/fanout buffer

Key Specifications

- Output cycle-cycle jitter <50ps
- Output to Output skew <50ps
- Phase jitter: PCle Gen3 <1.0ps rms


Features/Benefits

- 3 Selectable SMBus Addresses; Mulitple devices can share the same SMBus Segment
- OE# pins; Suitable for Express Card applications
- PLL or bypass mode; PLL can dejitter incoming clock
- Selectable PLL bandwidth; minimizes jitter peaking in downstream PLL's
- Spread Spectrum Compatible; tracks spreading input clock for low EMI
- SMBus Interface; unused outputs can be disabled
- Supports undriven differential outputs in Power Down mode for power management

Output Features

- 4 0.7V current-mode differential HCSL output pairs
- Supports zero delay buffer mode and fanout mode
- Selectable bandwidth
- 50-110 MHz operation in PLL mode
- 5-166 MHz operation in Bypass mode

Functional Block Diagram

Pin Configuration

VDDR	1	28	VDDA
SRC_IN	2	27	GNDA
SRC_IN#	3	26	IREF
GND	4	25	PD#
VDD	5		VDD
DIF_1	6	23 22 21 20	DIF_6
DIF_1#	7	4 22	DIF_6#
OE1#	8	21	OE6#
DIF_2	9	16 20	DIF_5
DIF_2#	10		DIF_5#
VDD	11	18	VDD
BYP#_HIBW_LOBW	12	17	SMB_ADR_tri
SMBCLK	13	16	VDD
SMBDAT	14	15	GND

Notes:

Highlighted Pins are the differences between 9DB403 and 9DB433.

Pin 12 and Pin 17 are latched on power up. Please make sure that the power supply to the pullup/pulldown resistors ramps at the same time as the main supply to the chip.

SMBus Address Selection and Readback

SMB_ADR_tri	Address
Low	DA/DB
Mid	DC/DD
High	D8/D9

PLL Operating Mode Readback Table

BYP#_LOBW_HIBW	MODE	Byte0, bit 3	Byte 0 bit 1
Low	Bypass	0	0
Mid	PLL 100M Hi BW	1	0
High	PLL 100M Low BW	0	1

Power Groups

Pin N	umber	Description
VDD	GND	Description
1	4	SRC_IN/SRC_IN#
5,11,18, 24	4	DIF(1,2,5,6)
16	15	DIGITAL VDD/GND
28	27	Analog VDD/GND for PLL in IREF

For best results, treat pin 1 as analog VDD.

Tri-Level Input Logic Pins

State of Pin	Voltage
Low	<0.8V
Mid	1.2 <vin<1.8v< td=""></vin<1.8v<>
High	Vin > 2.0V

Pin Descriptions

PIN#	PIN NAME	PIN TYPE	DESCRIPTION
1	VDDR	PWR	3.3V power for differential input clock (receiver). This VDD should be treated as an
'	VDDN	PVVN	analog power rail and filtered appropriately.
2	SRC_IN	IN	0.7 V Differential SRC TRUE input
3	SRC_IN#	IN	0.7 V Differential SRC COMPLEMENTARY input
4	GND	PWR	Ground pin.
5	VDD	PWR	Power supply, nominal 3.3V
6	DIF_1	OUT	0.7V differential true clock output
7	DIF_1#	OUT	0.7V differential Complementary clock output
8	OE1#	IN I	Active low input for enabling DIF pair 1.
0	OE1#	IIV	1 =disable outputs, 0 = enable outputs
9	DIF_2	OUT	0.7V differential true clock output
10	DIF_2#	OUT	0.7V differential Complementary clock output
11	VDD	PWR	Power supply, nominal 3.3V
12	BYP#_HIBW_LOBW	IN	Tri-level input to select bypass mode, Hi BW PLL, or Lo BW PLL mode
13	SMBCLK	IN	Clock pin of SMBUS circuitry, 5V tolerant
14	SMBDAT	I/O	Data pin of SMBUS circuitry, 5V tolerant
15	GND	PWR	Ground pin.
16	VDD	PWR	Power supply, nominal 3.3V
17	SMB_ADR_tri	IN	SMBus address select bit. This is a tri-level input that decodes 1 of 3 SMBus Addresses.
18	VDD	PWR	Power supply, nominal 3.3V
19	DIF_5#	OUT	0.7V differential Complementary clock output
20	DIF_5	OUT	0.7V differential true clock output
0.1	OFCII	INI	Active low input for enabling DIF pair 6.
21	OE6#	IN	1 =disable outputs, 0 = enable outputs
22	DIF_6#	OUT	0.7V differential Complementary clock output
23	DIF_6	OUT	0.7V differential true clock output
24	VDD	PWR	Power supply, nominal 3.3V
25	PD#	IN	Asynchronous active low input pin used to power down the device. The internal
25	PD#	IIN	clocks are disabled and the VCO and the crystal osc. (if any) are stopped.
			This pin establishes the reference for the differential current-mode output pairs. It
26	IREF	OUT	requires a fixed precision resistor to ground. 475ohm is the standard value for
20	INEF	001	100ohm differential impedance. Other impedances require different values. See data
		<u> </u>	sheet.
27	GNDA	PWR	Ground pin for the PLL core.
28	VDDA	PWR	3.3V power for the PLL core.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the 9DB433. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
3.3V Core Supply Voltage	VDDA/R				4.6	V	1,2
3.3V Logic Supply Voltage	VDD				4.6	V	1,2
Input Low Voltage	V_{IL}		GND-0.5			V	1
Input High Voltage	V_{IH}	Except for SMBus interface			V _{DD} +0.5V	V	1
Input High Voltage	V_{IHSMB}	SMBus clock and data pins			5.5V	٧	1
Storage Temperature	Ts		-65		150	°C	1
Junction Temperature	Tj				125	°C	1
Input ESD protection	ESD prot	Human Body Model	2000			V	1

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-DIF 0.7V Current Mode Differential Outputs

 $T_A = T_{COM}$ or T_{IND} : Supply Voltage VDD = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Slew rate	Trf	Scope averaging on	1	2	4	V/ns	1, 2, 3
Slew rate matching	ΔTrf	Slew rate matching, Scope averaging on			20	%	1, 2, 4
Voltage High	VHigh	Statistical measurement on single-ended signal using oscilloscope math function. (Scope	660	800	850	mV	1
Voltage Low	VLow	averaging on)	-150	14	150	IIIV	1
Max Voltage	Vmax	Measurement on single ended signal using		806	1150	mV	1
Min Voltage	Vmin	absolute value. (Scope averaging off)	-300	-1		IIIV	1
Vswing	Vswing	Scope averaging off (Differential)	300	1552		mV	1, 2
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	250	375	550	mV	1, 5
Crossing Voltage (var)	Δ-Vcross	Scope averaging off		18	140	mV	1, 6

¹Guaranteed by design and characterization, not 100% tested in production. IREF = VDD/(3xR_R). For R_R = 475 Ω (1%), I_{REF} = 2.32mA. I_{OH} = 6 x I_{REF} and V_{OH} = 0.7V @ Z_O=50 Ω (100 Ω differential impedance).

² Operation under these conditions is neither implied nor guaranteed.

² Measured from differential waveform

³ Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a +/-150mV window around differential 0V.

⁴ Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a +/-75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.

⁵ Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

⁶ The total variation of all Vcross measurements in any particular system. Note that this is a subset of V_cross_min/max (V_cross absolute) allowed. The intent is to limit Vcross induced modulation by setting V_cross_delta to be smaller than V_cross absolute.

Electrical Characteristics-Input/Supply/Common Parameters

 $TA = T_{COM}$ or T_{IND} ; Supply Voltage VDD = 3.3 V +/-5%

CONDITIONS Commmercial range Industrial range ended inputs, except SMBus, low ureshold and tri-level inputs ended inputs, except SMBus, low ureshold and tri-level inputs ded inputs, V _{IN} = GND, V _{IN} = VDD Single-ended inputs Inputs with internal pull-up resistors Inputs with internal pull-down resistors	MIN 0 -40 2 GND - 0.3 -5 -200 5 50	-0.02	MAX 70 85 V _{DD} + 0.3 0.8 5 200	UNITS °C °C V UA uA MHz	1 1 1 1 1 1 2
Industrial range ended inputs, except SMBus, low breshold and tri-level inputs ended inputs, except SMBus, low breshold and tri-level inputs ded inputs, V _{IN} = GND, V _{IN} = VDD Single-ended inputs Inputs with internal pull-up resistors nputs with internal pull-down resistors $V_{DD} = 3.3 \text{ V}, \text{ Bypass mode}$ $= 3.3 \text{ V}, 100 \text{MHz PLL mode}$	-40 2 GND - 0.3 -5 -200		85 V _{DD} + 0.3 0.8 5 200	°C V V uA	1 1 1
ended inputs, except SMBus, low preshold and tri-level inputs ended inputs, except SMBus, low preshold and tri-level inputs ded inputs, V _{IN} = GND, V _{IN} = VDD Single-ended inputs Inputs with internal pull-up resistors inputs with internal pull-down resistors of the present	2 GND - 0.3 -5 -200		V _{DD} + 0.3 0.8 5 200 166	V V uA uA	1 1 1
areshold and tri-level inputs anded inputs, except SMBus, low areshold and tri-level inputs ded inputs, V _{IN} = GND, V _{IN} = VDD Single-ended inputs Inputs with internal pull-up resistors apputs with internal pull-down resistors apputs with	GND - 0.3 -5 -200		0.8 5 200	V uA uA	1 1
reshold and tri-level inputs ded inputs, V _{IN} = GND, V _{IN} = VDD Single-ended inputs Inputs with internal pull-up resistors nputs with internal pull-down resistors $V_{DD} = 3.3 \text{ V}, \text{ Bypass mode}$ = 3.3 V, 100MHz PLL mode	-5 -200 5		5 200 166	uA uA	1
Single-ended inputs Inputs with internal pull-up resistors nputs with internal pull-down resistors $Y_{DD} = 3.3 \text{ V}$, Bypass mode $Y_{DD} = 3.3 \text{ V}$, 100MHz PLL mode	-200 5		200 166	uA	1
Inputs with internal pull-up resistors nputs with internal pull-down resistors $V_{DD} = 3.3 \text{ V}$, Bypass mode = 3.3 V, 100MHz PLL mode	5	100	166		
= 3.3 V, 100MHz PLL mode		100		MHz	2
	50	100			
ogic Inputs, except DIF_IN			110	MHz	2
ogic Inputs, except DIF_IN			7	nΗ	1
- •	1.5		5	pF	1
_IN differential clock inputs	1.5		2.7	pF	1,4
Output pin capacitance			6	рF	1
DD Power-Up and after input clock or or de-assertion of PD# to 1st clock			1	ms	1,2
Allowable Frequency (Triangular Modulation)	30	31.5	33	kHz	1
F start after OE# assertion stop after OE# deassertion	1	2	3	cycles	1,3
DIF output enable after PD# de-assertion		13	300	us	1,3
Fall time of control inputs			5	ns	1,2
Rise time of control inputs			5	ns	1,2
			0.8	V	1
	2.1		V_{DDSMB}	V	1
@ I _{PULLUP}			0.4	V	1
@ V _{OL}	4			mA	1
3V to 5V +/- 10%	2.7		5.5	V	1
VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
VIH + 0.15) to (Max VIL - 0.15)			300	ns	1
um SMBus operating frequency			100	kHz	1,5
	Output pin capacitance Output pin capacitance On Power-Up and after input clock or of de-assertion of PD# to 1st clock Allowable Frequency (Triangular Modulation) F start after OE# assertion Stop after OE# deassertion DIF output enable after PD# de-assertion Fall time of control inputs Rise time of control inputs @ Ipullup @ Vol 3V to 5V +/- 10% VIL - 0.15) to (Min VIH + 0.15)	Degic Inputs, except DIF_IN F_IN differential clock inputs Output pin capacitance Degic Power-Up and after input clock or or de-assertion of PD# to 1st clock Allowable Frequency (Triangular Modulation) F start after OE# assertion F stop after OE# deassertion DIF output enable after PD# de-assertion Fall time of control inputs Rise time of control inputs Output Poul Pullup Output Quarter Output Quarter Authorized Pullup Output Quarter Output Poul Pullup Output Quarter Outpu	Degic Inputs, except DIF_IN F_IN differential clock inputs Output pin capacitance Degic Power-Up and after input clock of or de-assertion of PD# to 1st clock Allowable Frequency (Triangular Modulation) F start after OE# assertion F stop after OE# deassertion DIF output enable after PD# de-assertion Fall time of control inputs Rise time of control inputs Output Poul Poul Poul Poul Poul Poul Poul Poul	7 20gic Inputs, except DIF_IN 1.5 5 5 5 5 5 5 5 5 5	7

¹Guaranteed by design and characterization, not 100% tested in production.

²Control input must be monotonic from 20% to 80% of input swing.

 $^{^3}$ Time from deassertion until outputs are >200 mV

⁴DIF_IN input

⁵The differential input clock must be running for the SMBus to be active

Electrical Characteristics-Clock Input Parameters

 $TA = T_{COM}$ or T_{IND} ; Supply Voltage VDD = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Input High Voltage - DIF_IN	V _{IHDIF}	Differential inputs (single-ended measurement)	600	800	1150	mV	1
Input Low Voltage - DIF_IN	V _{ILDIF}	Differential inputs (single-ended measurement)	V _{SS} - 300	0	300	mV	1
Input Common Mode Voltage - DIF_IN	V _{COM}	Common Mode Input Voltage	300		1000	mV	1
Input Amplitude - DIF_IN	V_{SWING}	Peak to Peak value (single-ended)	300		1450	mV	1
Input Slew Rate - DIF_IN	dv/dt	Measured differentially	1		8	V/ns	1,2
Input Leakage Current	I _{IN}	$V_{IN} = V_{DD}$, $V_{IN} = GND$	-5	-0.02	5	uA	1
Input Duty Cycle	d _{tin}	Measurement from differential waveform	45	50	55	%	1
Input Jitter - Cycle to Cycle	J_{DIFIn}	Differential Measurement	0		125	ps	1

¹ Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-Current Consumption

 $TA = T_{COM}$ or T_{IND} ; Supply Voltage VDD = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Operating Supply Current	I _{DD3.3OP}	All outputs active @100MHz, C _L = Full load;		170	200	mA	1
Davisandavin Cumant	I _{DD3.3PD}	All diff pairs driven		53	60	mA	1
Powerdown Current	I _{DD3.3PDZ}	All differential pairs tri-stated		3	6	mA	1

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-Output Duty Cycle, Jitter, Skew and PLL Characterisitics

 $TA = T_{COM}$ or T_{IND} ; Supply Voltage VDD = 3.3 V +/-5%

··· · COWI ·· · IND, · · · · · · · · · · · · · · · · · · ·							
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
		-3dB point in High BW Mode (T _{IND})	1.5	2.7	4.1	MHz	1
PLL Bandwidth	BW	-3dB point in High BW Mode (T _{COM})	2	2.7	4	MHz	1
		-3dB point in Low BW Mode	0.7	1.1	1.4	MHz	1
PLL Jitter Peaking	t _{JPEAK}	Peak Pass band Gain		1.5	2	dB	1
Duty Cycle	t _{DC}	Measured differentially, PLL Mode	45	49	55	%	1
Duty Cycle Distortion	t _{DCD}	Measured differentially, Bypass Mode @100MHz	-2		2	%	1,4
		Bypass Mode, V _T = 50% (T _{IND})	2500		4900	ps	1
Skew, Input to Output	t _{pdBYP}	Bypass Mode, V _T = 50% (T _{COM})	2500		4500	ps	1,5
	t _{pdPLL}	PLL Mode V _T = 50%	-250	-50	250	ps	1
Skew, Output to Output	t _{sk3}	V _T = 50%			50/60	ps	1,5
litter Cycle to eyele	+	PLL mode			50	ps	1,3
Jitter, Cycle to cycle	t _{jcyc-cyc}	Additive Jitter in Bypass Mode	•		50	ps	1,3

¹Guaranteed by design and characterization, not 100% tested in production.

²Slew rate measured through +/-75mV window centered around differential zero

 $^{^{2}} I_{REF} = V_{DD}/(3xR_{R}). \ \ \, \text{For} \; R_{R} = 475\Omega \; (1\%), \; I_{REF} = 2.32 \text{mA}. \; I_{OH} = 6 \; x \; I_{REF} \; \text{and} \; V_{OH} = 0.7 V \; @ \; Z_{O} = 50\Omega. \; \, \text{The standard of the standard of$

³ Measured from differential waveform

⁴ Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in bypass mode.

⁵ First number is commercial temp, second number is industrial temp.

Electrical Characteristics-PCle Phase Jitter Parameters

 $TA = T_{COM}$ or T_{IND} : Supply Voltage VDD = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS		TYP	MAX	UNITS	Notes
	t _{jphPCleG1}	PCIe Gen 1		30	86	ps (p-p)	1,2,3
Phase Jitter, PLL Mode		PCIe Gen 2 Lo Band 10kHz < f < 1.5MHz		1.0	3	ps (rms)	1,2
	^t jphPCleG2	PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz)		2.2	3.1	ps (rms)	1,2
	t _{jphPCleG3}	PCIe Gen 3 (PLL BW of 2-4MHz, CDR = 10MHz)		0.5	1	ps (rms)	1,2,4
	t _{jphPCleG1}	PCIe Gen 1		1	5	ps (p-p)	1,2,3
Additive Phase Jitter,	t _{jphPCleG2}	PCIe Gen 2 Lo Band 10kHz < f < 1.5MHz		0.1	0.1	ps (rms)	1,2
Bypass Mode		PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz)		0.2	0.3	ps (rms)	1,2
	t _{jphPCleG3}	PCIe Gen 3 (PLL BW of 2-4MHz, CDR = 10MHz)		0.0	0.1	ps (rms)	1,2,4

¹ Applies to all outputs.

Clock Periods-Differential Outputs Tracking Spread Spectrum

Measurement Window	1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		
Symbol	Lg-	-SSC	-ppm error	0ppm	+ ppm error	+SSC	Lg+		
	Absolute Period	Short-term Average	Long-Term Average	Period	Long-Term Average	Short-term Average	Period		
Definition	Minimum Absolute	Minimum Absolute	Minimum Absolute	Nominal	Maximum	Maximum	Maximum		
	Period	Period	Period					Units	Notes
DIF 100	9.949	9.999	10.024	10.025	10.026	10.051	10.101	ns	1,2,3

Clock Periods-Differential Outputs not Tracking Spread Spectrum

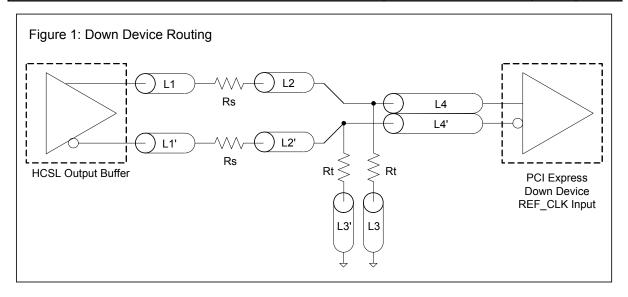
Measurement Window	1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		
Symbol	Lg-	-SSC	-ppm error	0ppm	+ ppm error	+SSC	Lg+		
Definition	Absolute Period	Short-term Average	Long-Term Average	Period	Long-Term Average	Short-term Average	Period		
Delinition	Minimum Absolute Period	Minimum Absolute Period	Minimum Absolute Period	Nominal	Maximum	Maximum	Maximum	Units	Notes
DIF 100M	9.949		9.999	10.000	10.001		10.051	ns	1,2,3

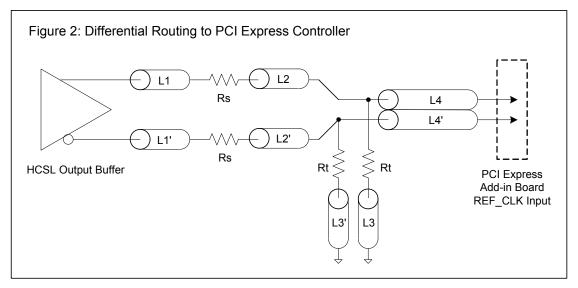
¹Guaranteed by design and characterization, not 100% tested in production.

² See http://www.pcisig.com for complete specs

³ Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.

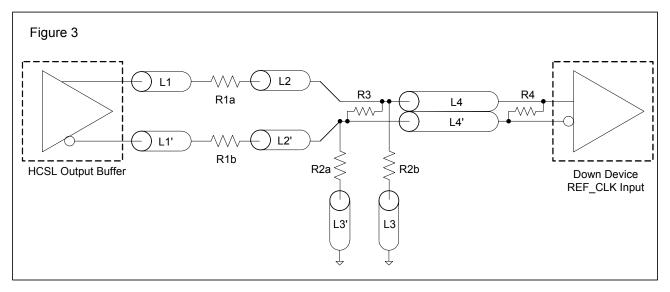
⁴ Subject to final radification by PCI SIG.

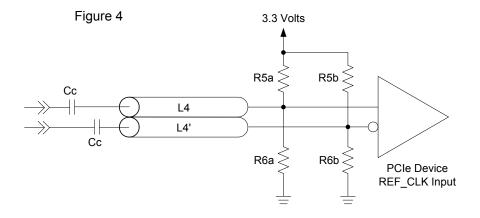

² All Long Term Accuracy specifications are guaranteed with the assumption that the input clock complies with CK410B+ accuracy requirements. The buffer itself does not contribute to ppm error.


 $^{^{\}rm 3}$ Driven by PCIe output of main clock, PLL Mode or Bypass mode

Output Termination and Layout Information								
Common Recommendations for Differential Routing	Dimension or Value	Unit	Figure					
L1 length, route as non-coupled 50ohm trace	0.5 max	inch	1					
L2 length, route as non-coupled 50ohm trace	0.2 max	inch	1					
L3 length, route as non-coupled 50ohm trace	0.2 max	inch	1					
Rs	33	ohm	1					
Rt	49.9	ohm	1					

Down Device Differential Routing			
L4 length, route as coupled microstrip 100ohm differential trace	2 min to 16 max	inch	1
L4 length, route as coupled stripline 100ohm differential trace	1.8 min to 14.4 max	inch	1


Differential Routing to PCI Express Connector			
L4 length, route as coupled microstrip 100ohm differential trace	0.25 to 14 max	inch	2
L4 length, route as coupled stripline 100ohm differential trace	0.225 min to 12.6 max	inch	2



	Termination for LVDS and other Common Differential Signals (figure 3)								
Vdiff	Vp-p	Vcm	R1	R2	R3	R4	Note		
0.45v	0.22v	1.08	33	150	100	100			
0.58	0.28	0.6	33	78.7	137	100			
0.80	0.40	0.6	33	78.7	none	100	ICS874003i-02 input compatible		
0.60	0.3	1.2	33	174	140	100	Standard LVDS		

R1a = R1b = R1R2a = R2b = R2

Termination for Cable AC Coupled Application (figure						
Component	Value	Note				
R5a, R5b	8.2K 5%					
R6a, R6b	1K 5%					
Сс	0.1 μF					
Vcm	0.350 volts					

General SMBus Serial Interface Information for 9DB433

How to Write

- · Controller (host) sends a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) sends the byte count = X
- IDT clock will acknowledge
- Controller (host) starts sending Byte N through Byte N+X-1
- IDT clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

	Index Block Write Operation							
Controll	er (Host)		IDT (Slave/Receiver)					
Т	starT bit							
Slave A	Address							
WR	WRite							
			ACK					
Beginning	g Byte = N							
			ACK					
Data Byte	Count = X							
			ACK					
Beginnin	g Byte N							
			ACK					
0		×						
0		X Byte	0					
0		Ð	0					
			0					
Byte N	+ X - 1							
			ACK					
Р	stoP bit							

Read Address	Write Address
DD* _(H)	DC* _(H)

^{*}Assuming SMB_ADR_tri is at mid-level

How to Read

- · Controller (host) will send a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) will send a separate start bit
- Controller (host) sends the read address
- IDT clock will acknowledge
- IDT clock will send the data byte count = X
- IDT clock sends Byte N+X-1
- IDT clock sends Byte 0 through Byte X (if X_(H) was written to Byte 8)
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- · Controller (host) will send a stop bit

Index Block Read Operation							
Cor	ntroller (Host)		IDT (Slave/Receiver)				
Т	starT bit						
SI	ave Address						
WR	WRite						
			ACK				
Begi	nning Byte = N						
			ACK				
RT	Repeat starT						
SI	ave Address						
RD	ReaD						
			ACK				
			Data Byte Count=X				
	ACK						
			Beginning Byte N				
	ACK						
		ф	0				
	0	X Byte	0				
0		×	0				
0							
			Byte N + X - 1				
N	Not acknowledge						
Р	stoP bit						

SMBus Table: Frequency Select Register, READ/WRITE ADDRESS (Selectable)

By	te 0 Pin #	Name	Control Function	Type	0	1	Default
Bit 7	-	PD_Mode	PD# drive mode	RW	driven Hi-Z		1
Bit 6	-	OE_Mode	OE#_Stop drive mode	RW	driven	Hi-Z	1
Bit 5	-		Reserved				0
Bit 4	-		Reserved				
Bit 3	-	MODE1	DE1 BYPASS#/PLL1 RW See Operating Mode Readback Table		•	Latched	
Bit 2	-		Reserved				
Bit 1	-	MODE0	BYPASS#/PLL0	RW See Operating Mode Readback Table		Latched	
Bit 0	- SRC_DIV# SRC Divide by 2 Select		SRC Divide by 2 Select	RW	x/2	x/1	1

SMBus Table: Output Control Register

Byt	te 1 Pin #	Name	Control Function	Type	0	1	Default	
Bit 7			Reserved				1	
Bit 6	22,23	DIF_6	Output Enable	RW	Disable	Enable	1	
Bit 5	19,20	DIF_5	Output Enable	RW	Disable	Enable	1	
Bit 4			Reserved					
Bit 3			Reserved				1	
Bit 2	9,10	DIF_2	Output Enable	RW	Disable	Enable	1	
Bit 1	6,7	DIF_1	Output Enable	RW	Disable	Enable	1	
Bit 0			Reserved					

NOTE: The SMBus Output Enable Bit must be '1' AND the respective OE pin must be active for the output to run!

SMBus Table: OE Pin Control Register

Byt	te 2 Pin #	Name	Control Function	Type	0	1	Default	
Bit 7			Reserved				0	
Bit 6	22,23	DIF_6	DIF_6 Stoppable with OE6#	RW	Free-run	Stoppable	0	
Bit 5	19,20	DIF_5	DIF_5 Stoppable with OE5#	RW	Free-run	Stoppable	0	
Bit 4			Reserved					
Bit 3			Reserved					
Bit 2	9,10	DIF_2	DIF_2 Stoppable with OE2#	RW	Free-run	Stoppable	0	
Bit 1	6,7	DIF_1	DIF_1 Stoppable with OE1#	RW	Free-run	Stoppable	0	
Bit 0			Reserved				0	

NOTE: Only OE1# and OE6# are available on 28-TSSOP/SSOP packages. If you wish the default to be "Stoppable" see the 9DB434.

SMBus Table: Reserved Register

Byt	te 3	Pin #	Name	Control Function	Type	0	1	Default	
Bit 7				Reserved				Χ	
Bit 6				Reserved					
Bit 5				Reserved					
Bit 4				Reserved					
Bit 3				Reserved				Χ	
Bit 2				Reserved				Χ	
Bit 1				Reserved				Χ	
Bit 0				Reserved				X	

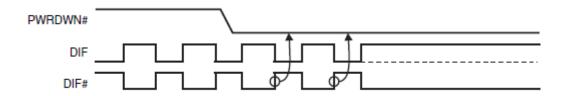
SMBus Table: Vendor & Revision ID Register

Byt	Byte 4 Pin # Name		Control Function	Type	0	1	Default
Bit 7	-	RID3		R	-	-	0
Bit 6	-	RID2	REVISION ID	R	-	-	0
Bit 5	-	RID1	HEVISION ID	R	-	-	0
Bit 4	-	RID0		R	-	-	0
Bit 3	-	VID3		R	-	-	0
Bit 2	-	VID2	VENDOR ID	R	-	-	0
Bit 1	-	VID1	VENDOR ID	R	-	-	0
Bit 0	-	VID0		R	-	-	1

SMBus Table: DEVICE ID

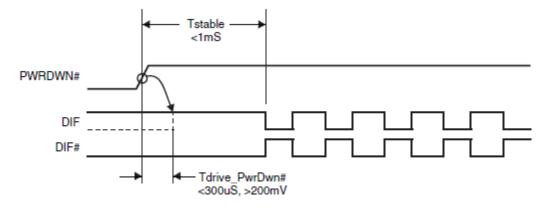
Byt	e 5 Pi	in #	Name	Control Function	Type	0	1	Default
Bit 7	-			Device ID 7 (MSB)	R			0
Bit 6	-			Device ID 6	R			1
Bit 5	-			Device ID 5	R			0
Bit 4	-			Device ID 4	R	Device ID is	43 Hex for	0
Bit 3	-			Device ID 3	R	9DB	433	0
Bit 2	-			Device ID 2	R			0
Bit 1	-			Device ID 1	R			1
Bit 0	-			Device ID 0	R			1

SMBus Table: Byte Count Register

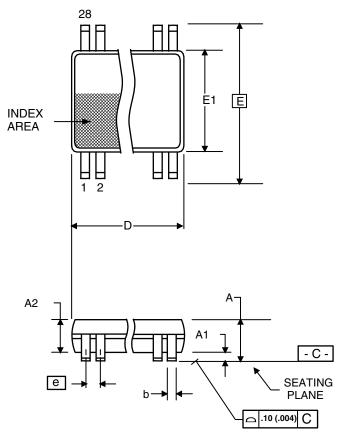

Byt	te 6 Pin #	Name	Control Function	Type	0	1	Default
Bit 7	•	BC7		RW	ī	-	0
Bit 6	-	BC6		RW	-	-	0
Bit 5	-	BC5		RW	Ī	-	0
Bit 4	-	BC4	Writing to this register configures how	RW	-	-	0
Bit 3	-	BC3	many bytes will be read back.	RW	Ī	-	0
Bit 2	-	BC2		RW	-	-	1
Bit 1	-	BC1		RW	-	-	1
Bit 0	-	BC0		RW	ı	-	1

PD#, Power Down

The PD# pin cleanly shuts off all clocks and places the device into a power saving mode. PD# must be asserted before shutting off the input clock or power to insure an orderly shutdown. PD is asynchronous active-low input for both powering down the device and powering up the device. When PD# is asserted, all clocks will be driven high, or tri-stated (depending on the PD# drive mode and Output control bits) before the PLL is shut down.

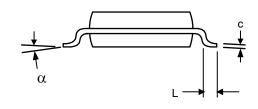

PD# Assertion

When PD# is sampled low by two consecutive rising edges of DIF#, all DIF outputs must be held High, or tri-stated (depending on the PD# drive mode and Output control bits) on the next High-Low transition of the DIF# outputs. When the PD# drive mode bit is set to '0', all clock outputs will be held with DIF driven High with 2 x IREF and DIF# tri-stated. If the PD# drive mode bit is set to '1', both DIF and DIF# are tri-stated.

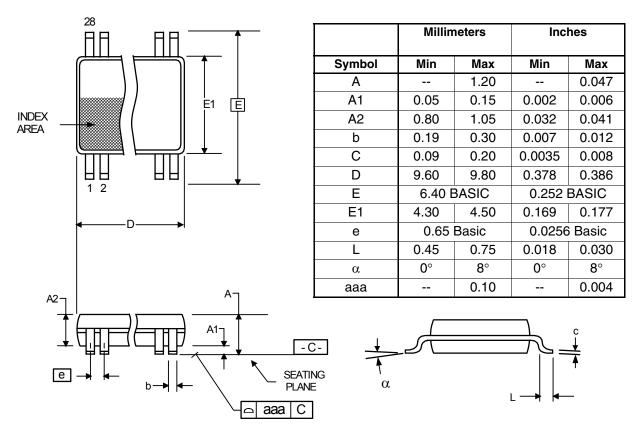


PD# De-assertion

Power-up latency is less than 1 ms. This is the time from de-assertion of the PD# pin, or VDD reaching 3.3V, or the time from valid SRC_IN clocks until the time that stable clocks are output from the device (PLL Locked). If the PD# drive mode bit is set to '1', all the DIF outputs must driven to a voltage of >200 mV within 300 us of PD# de-assertion.


Package Outline and Package Dimensions (28-pin SSOP)

209 mil SSOP							
	In Mill	limeters	In Inches				
SYMBOL	COMMON I	DIMENSIONS	COMMON	DIMENSIONS			
	MIN	MAX	MIN	MAX			
Α		2.00		.079			
A1	0.05		.002				
A2	1.65	1.85	.065	.073			
b	0.22	0.38	.009	.015			
С	0.09	0.25	.0035	.010			
D	SEE VA	RIATIONS	SEE VARIATIONS				
E	7.40	8.20	.291	.323			
E1	5.00	5.60	.197	.220			
е	0.65	0.65 BASIC		BASIC			
L	0.55	0.95	.022	.037			
N	SEE VARIATIONS		SEE VARIATIONS				
α	0°	8°	0°	8°			


VARIATIONS								
N	D	mm.	D (inch)					
IN	MIN	MAX	MIN	MAX				
28	9.90	10.50	.390	.413				

Reference Doc.: JEDEC Publication 95, MO-150

9DB433

Package Outline and Package Dimensions (28-pin TSSOP)

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
9DB433AFLF	Tubes	28-pin SSOP	0 to +70°C
9DB433AFLFT	Tape and Reel	28-pin SSOP	0 to +70°C
9DB433AGLF	Tubes	28-pin TSSOP	0 to +70°C
9DB433AGLFT	Tape and Reel	28-pin TSSOP	0 to +70°C
9DB433AFILF	Tubes	28-pin SSOP	-40 to +85°C
9DB433AFILFT	Tape and Reel	28-pin SSOP	-40 to +85°C
9DB433AGILF	Tubes	28-pin TSSOP	-40 to +85°C
9DB433AGILFT	Tape and Reel	28-pin TSSOP	-40 to +85°C

[&]quot;LF" suffix to the part number denotes Pb-Free configuration, RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

[&]quot;A" is the device revision designator (will not correlate with the datasheet revision).

Revision History

Rev.	Issue Date	Who	Description	Page #
Α	6/30/2010	RDW	Released to final	
В	5/9/2011	RDW	1. Update pin 1 pin-name and pin description from VDD to VDDR. This highlights that optimal peformance is obtained by treating VDDR as in analog pin. This is a document update only, there is no silicon change.	Various
С	3/13/2012	RDW	 Added additional line to PLL Bandwidth "-3dB point in High BW Mode" conditions for industrial mode (min1.5, typ 2.7, max 4.1 MHz) Added additional line to Skew, Input to Output "Bypass Mode" conditions for industrial mode (min 2500, max 4900 ps) 	6
D	7/5/2012	RDW	1. Changed references of PCIe Gen3 to PCIe Gen1,2,3	1
Е	7/12/2012	RDW	Added missing typical values to DS.	Various
F	9/18/2012	RDW	Updated Byte 2, bits 1, 2, 5 and 6 per char review. Outputs can be programmed with Byte 2 to be Stoppable or Free-Run with DIF_Stop pin, not the OE pins.	Various
F	9/30/2013	RDW	Corrected typo in ordering information for 28-SSOP I-temp device.	15
G	8/14/2015	RDW	1. Corrected default value of Byte 2 to 00hex. Added note referring to 9DB434 if FFhex is the desired default.	11

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775 For Tech Support

www.idt.com/go/clockhelp

Corporate Headquarters

Integrated Device Technology, Inc. www.idt.com

