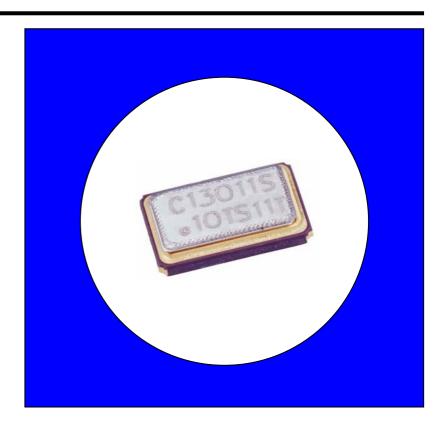
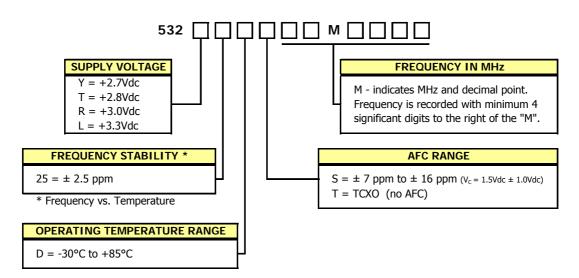


Model 532


Temperature Compensated Crystal Oscillator

FEATURES


- 5.0x3.2mm Surface Mount Footprint
- Clipped Sinewave Output
- Standard Frequencies;
 13 MHz, 16.8 MHz, 19.2 MHz, 19.44 MHz,
 19.68 MHz, 19.8 MHz, 26 MHz
- Frequency Stability ±2.5 ppm
- +2.7Vdc ~ +3.3Vdc Operation
- Optional Voltage Control for Frequency Tuning
- Operating Temperature –30°C to +85°C
- Tape & Reel Packaging
- RoHS/Green Compliant (6/6)

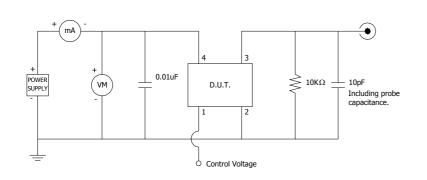
DESCRIPTION

The Model 532 is a Temperature Compensated Crystal Oscillator (TCXO) offering reduced size, low power consumption and enhanced frequency stability. The M532 is the perfect choice for today's compact or portable wireless communications applications that require tight frequency control.

ORDERING INFORMATION

Consult factory for other options that may be available. Example Part Number: 532L25DS19M4400

<u>Document No. 008-0324-0</u> Page 1 - 4 Rev. B


Model 532 5.0x3.2mm Ceramic Package Clipped Sinewave TCXO

ELECTRICAL CHARACTERISTICS

	PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT			
	Standard Frequencies	f _O	_	13, 16.	MHz					
	·		_		58, 19.8					
	Storage Temperature	T_{STG}	-	-40	-	85	°C			
	Operating Temperature	T_A	-	-30		85	°C			
	Frequency Stability									
	vs. Temperature		-30°C to 85°C	-	2.5					
Sun n	vs. Supply Voltage	Δf/f _O	5% change	-	-	0.2	± ppm			
χi	vs. Load	1 2.7.0	10% change	-	-	0.3				
Ma	vs. Aging		1st year	-	-	1.0				
Inte	vs. Aging		10 year	-	-	8.0				
Absolute Maximums	Supply Voltage									
1	Order Code 'Y'			2.57	2.7	2.84				
	Order Code 'T'	V_{CC}	±5%	2.66	2.8	2.94	V			
	Order Code 'R'			2.85	3.0	3.15				
	Order Code 'L'			3.14	3.3	3.47				
	Supply Current	I_{CC}	-	-	-	2.5	mA			
	Pulling Range, AFC	-	$ V_C = 1.5V \pm 1.0V$		7 - 16					
	Output Load	$R_L // C_L$	-	10 k0	Ohm //	10 pF				
	Control Voltage	V_{C}	-	0.5	1.5	2.5	V			
ters	Output Voltage Levels	V_{O}	Clipped Sinewave	0.8	1.2	-	Vp-p			
me	V _C Input Impedance	Z_{VC}	-	1.0	-	-	MOhm			
Waveform Parameters	Start Up Time	T_S	-	-	3	5	ms			
Ē	Harmonics	-	-	-	-	-5	dBc			
vefc	Phase Noise (Note 1)		Typical @ $f_0 = 13 \text{ MHz}$							
Wa		_	@100 Hz	-	-115	-	dBc/Hz			
			@1 kHz	-	-135	-				
			@10 kHz	-	-148	-				

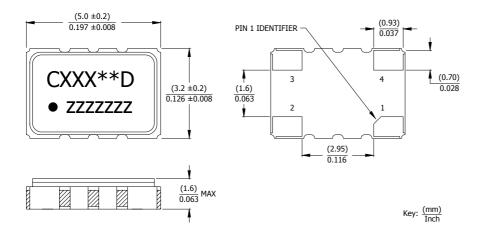
Notes:

TEST CIRCUIT, RL//CL LOAD

D.U.T. PIN ASSIGNMENTS

PIN	SYMBOL	DESCRIPTION
1	V _C	Control Voltage *
2	GND	Circuit & Package Ground
3	Output	Clipped Sine Wave Output
4	V_{cc}	Supply Voltage

^{*} If "No AFC" is selected, connect Pin 1 to ground.


<u>Document No. 008-0324-0</u> Page 2 - 4 Rev. E

^{1.} Phase Noise performance may vary based on output frequency.

MECHANICAL SPECIFICATIONS

PACKAGE DRAWING

Model 532 5.0x3.2mm Ceramic Package Clipped Sinewave TCXO

NOTES

- DO NOT make connections to nonlabeled pins. Castellation pins may have internal connections used in the manufacturing process.
- Termination pads (e4), barrier-plating is nickel (Ni) with gold (Au) flash plate.
- 3. Reflow conditions per JEDEC J-STD-020.

MARKING INFORMATION

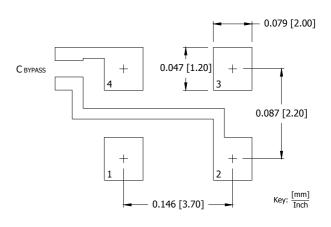
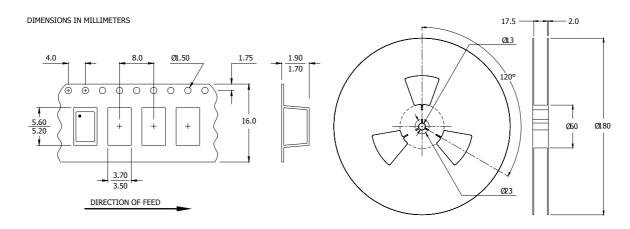

- 1. C CTS.
- 2. XXX Frequency code, see Table I for codes.
- 3. ** Manufacturing Site code.
- 4. D Date code, see Table II for codes.
- 5. − Pin 1 identifier.
- 6. zzzzzzz Reference code used in manufacturing process.

TABLE I - FREQUENCY CODING

Not all frequency values may be available for this model family. Consult factory for available frequencies.

FREQUENCY	MARKING CODE	FREQUENCY	MARKING CODE		
10.000 MHz	100	19.680 MHz	196		
10.240 MHz	102	19.800 MHz	198		
12.000 MHz	120	19.998 MHz	199		
12.800 MHz	128	20.000 MHz	200		
13.000 MHz	130	20.480 MHz	204		
13.500 MHz	135	24.000 MHz	240		
14.400 MHz	144	25.000 MHz	250		
15.360 MHz	153	26.000 MHz	260		
16.000 MHz	160	32.000 MHz	320		
16.800 MHz	168	32.512 MHz	325		
18.000 MHz	180	32.768 MHz	327		
19.200 MHz	192	38.880 MHz	388		
19.440 MHz	194				

SUGGESTED SOLDER PAD GEOMETRY


TABLE II - DATE CODE

	MONTH			JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	
	YEAR				37114	125	NIJ (IC	7 IX	101341	30.1	302	NOC .	OL.	001		DEG
2001	2005	2009	2013	2017	Α	В	С	D	E	F	G	Н	J	K	L	М
2002	2006	2010	2014	2018	N	Р	Q	R	S	T	U	V	W	Х	Υ	Z
2003	2007	2011	2015	2019	а	b	С	d	е	f	g	h	j	k	I	m
2004	2008	2012	2016	2020	n	р	q	r	S	t	u	٧	W	Х	У	Z

Model 532 5.0x3.2mm Ceramic Package Clipped Sinewave TCXO

TAPE AND REEL INFORMATION

Device quantity is 1,000 pieces minimum per 180mm reel.

ENVIRONMENTAL SPECIFICATIONS

Temperature Cycle: 200 cycles from -55°C to +125°C, 10 minute dwell at each temperature, 1

minute transfer time between temperatures.

Mechanical Shock: 1,500g's, 0.5mS duration, ½ sinewave, 3 shocks each direction along 3

mutually perpendicular planes (18 total shocks).

Sinusoidal Vibration: 0.06 inches double amplitude, 10 to 55 Hz and 20g's, 55 to 2,000 Hz, 3 cycles

each in 3 mutually perpendicular planes (9 times total).

Gross Leak: No leak shall appear while immersed in an FC40 or equivalent liquid at

+125°C for 20 seconds.

Fine Leak: Mass spectrometer leak rates less than 2x10⁻⁸ ATM cc/sec air equivalent.

Resistance to Solder Heat: Product must survive 3 reflows of +260°C peak, 10 seconds maximum.

Temperature and Humidity: 85°C, 85% R.H., full bias, 500 hours.

High Temperature Operating Bias: 2,000 hours at +125°C, maximum bias, disregarding frequency shift.

Frequency Aging: 1,000 hours at +85°C, full bias, less than ± 1 ppm shift.

Moisture Sensitivity Level: Level 1 per JEDEC J-STD-020.

QUALITY AND RELIABILITY

Quality systems meet or exceed the requirements of ISO 9000:2000 standards.

Document No. 008-0324-0 Page 4 - 4 Rev.